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Abstract 22 

Lack-of-fit in a stock assessment model can be related to both data weighting and the 23 

treatment of process error.  Although these contributing factors have been studied 24 

separately, interactions between them are potentially problematic.  In this study we set up 25 

a simple simulation intended to provide general guidance to analysts on the performance 26 

of an age-structured model under differing assignments of compositional data weight and 27 

process variance.  We compared cases where the true sample size is under-, ‘right-’ or 28 

over-weighted, and the degree of process variance (in this case temporal variability in 29 

selectivity) is under, correctly, or overestimated.  Each case was evaluated with regard to 30 

estimation of spawning biomass, and MSY-related quantities.  We also explored the 31 

effects of the estimation of natural mortality, steepness, as well as incorrectly specifying 32 

process error in selectivity when there is none.  Results showed that right-weighted 33 

estimation models assuming the correct degree of process error performed best in 34 

estimating all quantities.  Underweighting produced larger relative errors in spawning 35 

biomass, particularly when too much process error was allowed.  Conversely, 36 

overweighting produced larger errors mainly when the degree of process error was 37 

underestimated. MSY-related quantities were sensitive to both the estimation of natural 38 

mortality, and particularly steepness.  We suggest that data weighting and the treatment 39 

of process error should not be considered independently: estimation is most likely to be 40 

robust when process error is allowed (even if overestimated) and when compositional 41 

data are not excessively down-weighted. 42 

  43 
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Highlights:  44 

- Right-weighted estimation models assuming the correct degree of process error in 45 

fishery selectivity performed best in estimating spawning biomass, as well as the 46 

spawning biomass corresponding to MSY.   47 

- Under-weighting tended to produce larger relative errors in spawning biomass 48 

when process error was correctly specified.   49 

- Over-weighting produced larger errors mainly when the degree of process error 50 

was underestimated.  51 

- MSY-related quantities were sensitive to both the estimation of natural mortality, 52 

and particularly steepness. 53 

- Data-weighting and the treatment of process error in fishery selectivity should not 54 

be considered independently when constructing reliable stock assessments. 55 

56 
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1 Introduction 57 

Integrated statistical fisheries stock assessments are commonly used for the 58 

management of many important fish stock around the world (Fournier and Archibald 59 

1982; Hilborn and Walters 1992; Maunder and Punt 2013; Megrey 1989; Quinn and 60 

Deriso 1999).  Modern integrated models can be complex, considering multiple sources 61 

of data, with alternative error assumptions and relative weights (Maunder and Piner 2014; 62 

Maunder and Punt 2013).  Two recent workshops have highlighted the importance of 63 

how selectivity, relative data weights and process error are treated in integrated 64 

assessment models (Maunder and others 2014 summary for data weighting workshop). 65 

There are many sources of process error which may be important contributors to 66 

bias and imprecision in integrated stock assessments, including recruitment variability, 67 

mortality rates, growth, selectivity and catchability (e.g., Hurtado-Ferro and others 2014; 68 

Johnson and others 2015; Linton and Bence 2008; Ono and others 2015).  Recent 69 

research has highlighted the inherent complexity in the treatment of selectivity, 70 

historically considered to be ‘nuisance’ parameters, but increasingly acknowledged to be 71 

important for unbiased estimates of stock size and trend (Maunder and others 2014).  72 

Misspecification of selectivity has long been known to produce bias in statistical catch-at-73 

age models (Kimura 1990), and several recent studies have shown that time-varying 74 

selectivity may be expected in many cases (Sampson 2014; Sampson and Scott 2012).  75 

Misspecifying selectivity has also been implicated in retrospective patterns (Hurtado-76 

Ferro and others 2014; Stewart and Martell 2014).   77 

Data weighting is also a particularly problematic aspect of stock assessment 78 

(Francis 2011), and the focus of the recent CAPAM workshop (Ref. summary for this 79 
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issue).  Data weighting is an issue because, although they arise from separate processes, 80 

the true underlying error distribution and sampling variances for most (perhaps all) 81 

fisheries data are unknown (Maunder 2011). Further, the likelihoods that are used in most 82 

stock assessment models are often known to be convenient approximations (e.g., the 83 

multinomial), despite far greater known complexity in the underlying processes. The 84 

primary inputs for data weighting are the variance estimates assigned to indices of 85 

abundance and the sample sizes (or variances, depending on the likelihood function used) 86 

assigned to length- or age-composition data (hereafter ‘composition data’). For instance, 87 

a research survey may collect lengths for thousands of fish, sampled from hundreds of 88 

hauls, but an effective sample size of 20 may ultimately be used in the assessment 89 

(Francis 2011; Stewart and Hamel 2014). The results of stock assessments are sensitive to 90 

data weighting, and the choice of method used is most consequential when there is model 91 

misspecification (Punt 2016).  Several recent papers, and some in this issue, explore 92 

alternative methods for deriving weights after the model is assumed to be correctly 93 

specified (Citations pending other manuscripts in this issue).  94 

However, existing research has largely focused on either the treatment of process 95 

error (e.g., estimation of time-varying fishery selectivity) or data weighting, but not both 96 

(although, see Thompson, this issue).  Assuming one is known allows for several 97 

relatively simple methods (Maunder and Harley 2011; Thompson and Lauth 2012; 98 

Thorson and Taylor 2014), but when both are uncertain the problem becomes much more 99 

difficult. Lack-of-fit cannot necessarily be objectively assigned to either observation 100 

variance or process variance in a stock assessment (and there are other sources of both 101 

process and observation error, Linton and Bence 2008) based on model fit alone.   102 
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In this study, we structured a simulation approach to evaluate the performance of 103 

a simple age-structured model under combinations of different compositional data 104 

weighting and process error assumptions, and whether natural mortality, steepness of the 105 

stock-recruit curve, or both were estimated.  This simple simulation is intended to 106 

provide general guidance to analysts, not in terms of which data weighting rules or 107 

approaches should be applied, but whether it is preferable to over- or under-estimate the 108 

weight placed on compositional data and whether the treatment of process error in fishery 109 

selectivity affects this choice. 110 

2 Simulation approach 111 

 We used the ss3sim package (Anderson and others 2014; Anderson and others 112 

2015) implemented in R (R Core Team 2016), to create an operating model with a very 113 

simple, but groundfish-like life history.   This package uses the flexible software stock 114 

synthesis (Methot Jr and Wetzel 2013), coded in AD Model Builder (Fournier and others 115 

2012)  for both the operating and estimation models in simulations (i.e., self-testing 116 

instead of cross-testing; Deroba and others 2014). As in other published studies using 117 

ss3sim, this framework is well suited to relatively simple simulation experiments 118 

intended to target the effects of one to several factors with representative, but not 119 

necessarily realistic levels of model complexity (e.g., Hurtado-Ferro and others 2014; 120 

Monnahan and others 2015; Ono and others 2015). All code used to produce this study is 121 

based on open source tools and available online (Appendix A).  122 

The operating model was used to generate replicate data sets including variability 123 

in annual recruitment, which were then fit with a range of estimation models; a summary 124 

of both models is provided below.  Results were summarized via the distribution of 125 
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relative error in the estimated spawning biomass across the time series, and a few key 126 

metrics related to Maximum Sustainable Yield (merely to illustrate the potentially 127 

differing effects on reference point estimation). We compared cases where the true 128 

sample size is under-, ‘right-’ or over-weighted, and the degree of process error (in this 129 

case temporal variability in fishery selectivity) is under, correctly, or overestimated.  We 130 

also explored the effects of the estimation of natural mortality, steepness, as well as 131 

incorrectly specifying process error in fishery selectivity when there is none.  A test was 132 

run with extremely large sample sizes to verify that model dynamics were performing as 133 

expected, and that the estimation models produced unbiased results when correctly 134 

specified. 135 

2.1 Operating model specifications 136 

 The operating model was structured to be similar to many simple stock 137 

assessments with a moderately long time-series of observations, a single fishery 138 

responsible for the catch and a single fishery-independent survey (Table 1).  Population 139 

dynamics are governed by fishing and natural mortality (M=0.2), with annually variable 140 

recruitment centered on a Beverton-Holt stock-recruitment function with an intermediate 141 

value for steepness (h=0.65).  Selectivity for both the fishery and survey was asymptotic, 142 

using a simple parametric logistic form (implemented using the ascending side of the 143 

double-normal parameterization in stock synthesis; assuming asymptotic selectivity likely 144 

reducing the potential for confounding with natural mortality in all estimation models). 145 

Growth was specified as a von Bertalannfy curve with moderately rapid growth and a 146 

clear asymptote at older ages.  Fishing effort, growth parameters, and all other parameters 147 
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were fixed among simulations, with the only variability arising from recruitment 148 

deviations unique to each replicate, and stochastic generation of data. 149 

The fishery and fishery-independent survey each produced compositional data 150 

(lengths and ages) for a subset of the time-series years (Table 1, Appendix A) based on a 151 

multinomial distribution matching the true population (i.e., unbiased) with samples sizes 152 

roughly consistent with those observed in ‘data-rich’ stock assessments.  Two operating 153 

model scenarios were evaluated: 1) time–invariant fishery selectivity (no process error) 154 

and 2) a temporal trend in fishery selectivity (process error).  The fishery selectivity trend 155 

corresponded to a linear decrease in the parameter defining the first size with 100% 156 

selectivity (as parameterized in stock synthesis), followed by a linear increase in that 157 

parameter over most of the informed time-series (Fig. 1).  This pattern in fishery 158 

selectivity was selected over a simple ‘white-noise’ (independent random deviations from 159 

a mean) to mimic trends suspected in some stock assessments with directional changes in 160 

fishing behavior, biology or both (Stewart and Martell 2014). This type of change is more 161 

likely to produce systematic bias in the estimated demographics of the removals, and 162 

therefore potentially more import for analysts to consider.   163 

The operating model time series resulted in a stock fished down from unexploited 164 

equilibrium relatively rapidly then recovering to slightly higher levels at the very end of 165 

the time-series, characteristic of some histories observed in actual stock assessments (Fig. 166 

2). For each combination of operating model scenario and estimation model case 167 

(described below), 300 replicate time series were randomly generated.  168 

2.2 Estimation models 169 
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 Estimation models were correctly specified (matching the operating model) for all 170 

model parameters except: fishery selectivity, virgin recruitment, survey catchability and 171 

the set of specific factors explored: the degree of process error, the degree of observation 172 

error, the value for natural mortality, and the value for steepness of the stock-recruitment 173 

function (Table 2; we did not evaluate the more complicated case of natural mortality and 174 

steepness estimated simultaneously).   The sample sizes were not tuned in the estimation 175 

model, but were specified as either too small (0.1x), right (1x), or too large (10x), relative 176 

to the true simulated sample size (x). Fishery selectivity was either assumed to be 177 

constant, or allowed to vary as an additive random walk over time (Methot 2015) in the 178 

estimation model (as if a trend might be expected by the analyst).  The deviations for the 179 

random walk were constrained by a fixed sigma corresponding to either too little (sigma 180 

= 0), correctly specified (sigma = 0.5), or too large (sigma = 1.0).  Preliminary analysis 181 

showed that allowing a random walk provided a parameterization that was capable of 182 

generally mimicking the true pattern (Fig. 3).   183 

Each combination of factors (parameters estimated, compositional data weighting, 184 

and treatment of process error) represented a single case for the estimation model.  Each 185 

case was fit to all 300 replicates for each of the two scenarios of the operating model.  186 

Fitting was performed via penalized maximum likelihood, with the sigmas for fishery 187 

selectivity and recruitment deviations specified as described above.  In order to maintain 188 

the central tendency of the stock-recruitment function given lognormal variability in 189 

annual deviations, the bias correction for recruitment deviations (Methot and Taylor 190 

2011) was adjusted to match the conditions of each case and then held constant across all 191 

replicates.  This was performed by estimating the correction over the first 10 time-series, 192 
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then using the average of these for all replicates within each case (this procedure has 193 

become relatively standard for simulation experiments; see Anderson et al. 2014 for more 194 

information). Convergence of the estimation model for all replicates was evaluated based 195 

on inversion of the Hessian matrix. 196 

3 Results  197 

Estimation model behavior across both operating model scenarios and all 198 

combinations of factors was robust, with all replicates converging for all scenarios. 199 

In the simple operating model scenario without any process error in fishery 200 

selectivity, fitting estimation models assuming the correct value for steepness and natural 201 

mortality in all cases resulted in essentially unbiased and reasonably precise estimates of 202 

spawning biomass over the entire time-series (Median absolute relative error (MARE) = 203 

0.05; Table 3, Fig. 4).   The cases allowing for process error in fishery selectivity were 204 

similarly precise (MARE = 0.05) when compared to those correctly specified, as the 205 

penalty (sigma) constrained the deviations toward zero in the absence of signal in the 206 

data.  When the composition data were over-weighted (by a factor of 10) from the true 207 

sample sizes, the time-series also showed more variability (presumably the estimated 208 

fishery selectivity was following random variability due to sampling error) but remained 209 

unbiased.   210 

 In the second operating model scenario, with process error in fishery selectivity, 211 

more interesting patterns were observed.  Specifically, when natural mortality and 212 

steepness were correctly specified as well as the degree of process error, the time-series 213 

of spawning biomass estimates remained unbiased and relatively precise (MARE = 0.04-214 

0.06 depending on compositional data weighting; Table 3, Fig. 5).  However, when the 215 
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estimation models were misspecified to have no process error, the time series became 216 

systematically biased (MARE = 0.05-0.26), as the fishery removals from the dynamics 217 

were also misspecified. Right-weighting only partially ameliorated this bias, and 218 

underweighting the composition data largely removed it (MARE = 0.05) likely allowing 219 

the unbiased survey index to drive the estimated trend).   220 

 For cases where natural mortality was not assumed to be known without error, the 221 

degree of bias and imprecision was substantial (MARE = 0.06-0.26; Table 3, Fig. 6).  222 

The worst performing case was represented by misspecified fishery selectivity and over-223 

weighted compositional data (Fig. 6c).  For this case, many replicates resulted in 224 

estimates of steepness equal to 1.0. Reducing the weight on the composition data 225 

improved the precision, but not the bias, as the misspecification remained.  For the 226 

correctly specified selectivity sigma cases, the worst precision occurred when the data 227 

were underweighted, and there was little cost in imprecision to overweighting the data.  A 228 

similar pattern was also observed even when too much process error in fishery selectivity 229 

was allowed. 230 

 For estimation models where fishery selectivity was misspecified and steepness 231 

was not assumed to be known, performance of all data weighting was poor (MARE = 232 

0.40-0.51; Table 3, Figs. 7, 8).  Correctly specifying fishery selectivity, or allowing too 233 

much process error performed appreciably better across all data weightings, with right-234 

weighted data performing best (MARE = 0.11).  235 

Overall, the simulation results showed that right-weighted estimation models 236 

assuming the correct degree of process error performed best in estimating the time-series 237 

of spawning biomass (Table 4), as well as the spawning biomass corresponding to MSY 238 
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(Table 5).  Under-weighting produced larger relative errors in spawning biomass, 239 

particularly when too much process error was allowed.  Conversely, overweighting 240 

produced larger errors mainly when the degree of process error was underestimated. 241 

MSY-related quantities were sensitive to both the estimation of natural mortality, and 242 

particularly steepness (Fig. 7).   243 

4 Discussion 244 

The results of this study are consistent with other recent work suggesting there is 245 

little cost besides increased run times to estimating process error even if not present, but 246 

potentially substantial bias resulting from misspecification due to the overly simplistic 247 

assumption that fishery selectivity is constant (Martell and Stewart 2014; Punt and others 248 

2014; Thorson and Taylor 2014).  However, more complex approaches to smoothing of 249 

fishery selectivity may perform somewhat differently (Maunder and Harley 2011), and if 250 

used, may warrant additional investigation.  The bias due to misspecification in fishery 251 

selectivity, except in the case where all other model parameters are known perfectly and 252 

there is an unbiased trend index, cannot be ameliorated by adjustments to compositional 253 

data weighting.  Put simply, analysts should be aware that they cannot weight their way 254 

out of a misspecified model! 255 

Although purely objective methods for determining compositional data weighting 256 

and process error specification would be highly desirable for stock assessment analysts, 257 

we pragmatically assert that the specifics of any particular assessment may suggest 258 

tempering default approaches with a more subjective approach.  There is a cost to down-259 

weighting compositional data, except if the rest of the model is perfectly specified.  260 
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Where uncertainty is likely to exist in other scaling parameters (such as natural mortality 261 

and steepness) excessive down-weighting should be avoided. 262 

Our results suggest that data weighting and the treatment of process error should 263 

be considered together: estimation is most likely to be robust when process error is 264 

allowed (even if overestimated) and when data are not excessively down-weighted.  We 265 

recognize that the population dynamics simulated in this study are simple, and not likely 266 

to be specifically representative of individual species or life-history groups for which 267 

assessments may be conducted.  As such, a general simulation is no substitute for careful 268 

examination of model performance given a particular configuration of observed data and 269 

life-history characteristics.  Further, the approach taken here considers only several 270 

simple estimation models; more complex models may exhibit differing behavior and 271 

should also be explored in future studies. However, we suspect the trends across 272 

treatment of data and process error may be similar.  Our results should serve as a starting 273 

point for analysts conducting assessments: they provide general conceptual guidance for 274 

an approach when neither the true degree of process error, nor the correct data weighting 275 

is known.   276 
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Table 1. Operating model summary. 

Specification Value Comment 

Structure   

Time series length 100 years  

Catches Years 27-100 Based on fixed vector of Fs (Fig. 2) 

Fleets 2 Fishery and survey 

Survey and fishery selectivity shape Asymptotic Two-parameter logistic 

Stock-recruit function Beverton-Holt Parameterized with R0 and h 

Recruitment deviations Annual Randomly generated from lognormal 

Biology Single-sex  

Model parameters   

Log(R0) 18.7  

Steepness (h) 0.65  

Recruitment variability (σr) 0.4  

Natural Mortality (M) 0.2 Of course 

Survey catchability (Q) 1  

Length at age-1 20 cm  

Asymptotic length 132 cm  

Brody growth coefficient (k) 0.2  

CV of length-at-age 0.1 Constant across all ages 

Survey selectivity slope 5.2 Log (width); constant over time 

Survey selectivity peak length 41.8 Constant over time 

Fishery selectivity slope 5.1 Log (width); constant over time 

Fishery selectivity peak length variable Constant or with process error (Figure 1) 

Selectivity process error  

(scenario 2) 

Trend up and down in 

peak parameter 

When treated as deviations, this trend 

results in the implied sigma below. 

Implied selectivity sigma 0.5  

Data Generation   

Survey index data Year 76-100 Biennial 

Survey index sigma 0.2 In log space; constant across years 

Survey length and age data Year 76-100 Biennial 

Survey length and age sample size 500 (each) Generated from a multinomial 

Fishery length and age data 
Triennially from year 36-

72, annually thereafter 
 

Fishery length and age sample size 100 Generated from a multinomial 
 

 

 

 

 

Table 2. Estimation model factors; each combination across all levels of each was 

analyzed (except M and h were not simultaneously estimated). 

Process error Data weight 
Natural 

mortality (M) 
Steepness (h) 

S0: None (Sigma = 0) D1: Under-weighted (x0.1) M0: Fixed h0: Fixed 

S1: Sigma = 0.5 D2: Right-weighted (x1) M1: Estimated h1: Estimated 

S2: Sigma = 1.0 D3: Over-weighted (x10)   
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Table 3.  Median absolute relative error over the entire estimated time series of spawning 

biomass for each combination of operating model scenario and estimation model case. 

Process 

error 

Natural 

mortality Steepness 

Under-weighted 

(D1) 

Right-weighted 

(D2) 

Over-weighted 

(D3) 

Operating model without process error in selectivity 

S0 M0 h0 0.05 0.05 0.05 

S0 M0 h1 0.11 0.09 0.13 

S0 M1 h0 0.05 0.05 0.05 

S1 M0 h0 0.05 0.05 0.05 

S1 M0 h1 0.11 0.09 0.13 

S1 M1 h0 0.05 0.05 0.05 

S2 M0 h0 0.05 0.05 0.05 

S2 M0 h1 0.11 0.09 0.13 

S2 M1 h0 0.05 0.05 0.05 

Operating model with process error in selectivity 

S0 M0 h0 0.05 0.12 0.26 

S0 M0 h1 0.40 0.45 0.51 

S0 M1 h0 0.06 0.11 0.26 

S1 M0 h0 0.05 0.04 0.06 

S1 M0 h1 0.18 0.11 0.15 

S1 M1 h0 0.05 0.04 0.06 

S2 M0 h0 0.05 0.04 0.06 

S2 M0 h1 0.12 0.11 0.15 

S2 M1 h0 0.05 0.04 0.05 
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Table 4.  Median absolute relative error in estimated SSBMSY for each combination of 

operating model scenario and estimation model case.  

Process 

error 

Natural 

mortality Steepness 

Under-weighted 

(D1) 

Right-weighted 

(D2) 

Over-weighted 

(D3) 

Operating model without process error in selectivity 

S0 M0 h0 0.05 0.05 0.05 

S0 M0 h1 0.11 0.09 0.13 

S0 M1 h0 0.05 0.05 0.05 

S1 M0 h0 0.05 0.05 0.05 

S1 M0 h1 0.11 0.09 0.13 

S1 M1 h0 0.05 0.05 0.05 

S2 M0 h0 0.05 0.05 0.05 

S2 M0 h1 0.11 0.09 0.13 

S2 M1 h0 0.05 0.05 0.05 

Operating model with process error in selectivity 

S0 M0 h0 0.05 0.12 0.26 

S0 M0 h1 0.40 0.45 0.51 

S0 M1 h0 0.06 0.11 0.26 

S1 M0 h0 0.05 0.04 0.06 

S1 M0 h1 0.18 0.11 0.15 

S1 M1 h0 0.05 0.04 0.06 

S2 M0 h0 0.05 0.04 0.06 

S2 M0 h1 0.12 0.11 0.15 

S2 M1 h0 0.05 0.04 0.05 
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Figure captions 

 

Figure 1.  Trend in the fishery selectivity parameter defining the first size at 100% 

selectivity (upper panel), and the resulting fishery selectivity curve (lower panel) used in 

the operating model at years 26 (and the full time-series when sigma = 0), 40, and 100. 

 

Figure 2. Time series plot of median spawning biomass across replicates (a), from the 

operating models with and without process error in selectivity. The y-axis units are 

arbitrary and left off for clarity.  Instantaneous fishing mortality (F), constant across all 

replicates (b). 

 

Figure 3.  Median fishery selectivity parameter deviations estimated across all replicates, 

with (bottom row) and without (top row) process error in the operating model (natural 

mortality and steepness are fixed at the true values; M0 and h0). Columns represent the 

level of process error specified in the EM.  

 

Figure 4. Time series estimates of relative error in spawning biomass (shading indicates 

the 25, 50, 75, and 95th percentiles) for the operating model with no process error, and 

estimation models do not estimate natural mortality (M0) or steepness (h0).    

 

Figure 5. Time series estimates of relative error in spawning biomass (shading indicates 

the 25, 50, 75, and 95th percentiles) for the operating model with process error (scenario 

2), and estimation models that do not estimate natural mortality (M0) or steepness (h0).  
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Figure 6. Time series estimates of relative error in spawning biomass (shading indicates 

the 25, 50, 75, and 95th percentiles) for the operating model including process error, and 

estimation models estimating natural mortality (M1).  

 

Figure 7.  Distribution of relative error in spawning biomass producing MSY across all 

cases of the estimation model, and both operating model scenarios.  

 

Figure 8.  Distribution of relative error in spawning biomass over all years for all cases of 

the estimation model, and both operating model scenarios.  
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Supplementary material 

Appendix A 

This simulation study can be fully reproduced with widely accessible open-source tools. 

The website https://github.com/ss3sim/procdata contains all model configuration files, 

results, additional figures, and code to rerun the simulation. We encourage interested 

readers to explore and extend the simulation if desired. 



1 

 

 



1 

 

 



1 

 

 

 



1 

 

 

 



1 

 

 



1 

 

 

 



1 

 

 



1 

 

 

 




